

Check for updates





# Proximal interphalangeal surface replacement in patients with severe longitudinal joint axis deviation

Journal of Hand Surgery (European Volume) 2025, Vol. 50(7) 949–955 © The Author(s) 2024 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/17531934241305801 journals.sagepub.com/home/jhs



Laima Bandzaite<sup>1</sup>, Miriam Marks<sup>2</sup>, Stephan Schindele<sup>1</sup> and Daniel B. Herren<sup>1</sup>

#### Abstract

We compared the 2 year outcomes after proximal interphalangeal joint surface replacement in 68 joints with severe  $(>15^{\circ})$  preoperative longitudinal axis deviation and 50 joints without  $(<5^{\circ})$  preoperative deviation. Patients in both groups had a mean preoperative brief Michigan Hand Outcomes Questionnaire score of 47 and had similar 2 year scores of 72 (95% CI 68–77) (severe deviation) and 70 (95% CI 65–76) (no deviation). Pain, proximal interphalangeal joint range of motion, grip strength and complications did not differ between the groups at 2 years. Ninety per cent of the severely deviated joints had a deviation of less than 15° at follow-up. The revision rates were 5.9% and 1.8% for deviated and non-deviated joints, respectively. We recommend a surface replacing implant to correct severe preoperative axis deviations of the proximal interphalangeal joint, but the risk of revision surgery needs to be considered.

Level of evidence: IV

#### **Keywords**

CapFlex-PIP prosthesis, finger middle joint, hand surgery, implant, osteoarthritis

Date received: 11th September 2024; revised: 18th November 2024; accepted: 20th November 2024

# Introduction

Proximal interphalangeal (PIP) joint osteoarthritis of the fingers can cause longitudinal axis deviation, which is most often observed in the radial digits owing to ulnar-directed mechanical forces created during a pinch grip with the thumb. Both the index and middle fingers are functionally important for achieving a stable pinching action with the thumb, and radial instability can lead to diminished hand function (El-Gohary et al., 2019). The standard treatment for deviating osteoarthritis of the index and middle fingers is PIP joint arthrodesis (Pellegrini and Burton, 1990; Vitale et al., 2015). Silicone implants, often used for arthritic PIP joints in the ulnar digits, are known to lack the rigidity required for ensuring a stable grip in the radial rays (Ceruso et al., 2017). Studies have shown that the use of silicone implants in joints with preoperative axis deviation leads to more complications including postoperative instability, implant breakage and recurrent axis deviation (Bales et al., 2014; Helder et al., 2021). In contrast, surface replacement implants offer better axial stability of the joint (Hensler et al., 2020). It has been shown that preoperative deviations from the longitudinal axis can be corrected with a surface replacing implant (Herren et al., 2022; Meuser et al., 2024; Reischenböck et al., 2021). However, it is not known whether patients with

#### Corresponding Author:

Daniel B. Herren, MD, MHA, Schulthess Klinik, Department of Hand Surgery, Lengghalde 2, 8008 Zurich, Switzerland. Email: daniel.herren@kws.ch X: @SchulthessNews

<sup>&</sup>lt;sup>1</sup>Department of Hand Surgery, Schulthess Klinik, Zurich, Switzerland

<sup>&</sup>lt;sup>2</sup>Department of Teaching, Research and Development, Schulthess Klinik, Zurich, Switzerland

preoperative axis deviations have similar outcomes to those with straight fingers.

The aim of this study was to compare the 2 year outcomes after surface replacement in PIP joints with a preoperative axis deviation larger than 15° with those without any preoperative deviation. We hypothesized that the postoperative hand function, as measured by the brief Michigan Hand Outcomes Questionnaire (MHQ), would be similar in both groups.

## Methods

## Patients and setting

All patients who receive a PIP arthroplasty are prospectively documented in a single-centre registry using a REDCap (Research Electronic Data Capture) database (Harris et al., 2009). For this retrospective data analysis, we included patients who received one primary PIP surface replacing arthroplasty and attended a 2 year follow-up. Patients were divided into two groups depending on the extent of preoperative PIP joint axis deviation, which was classified as either severe deviation (>15°) of the longitudinal finger axis or no deviation ( $<5^{\circ}$ ). Patients with moderate joint axis deviation (5–15°) were excluded from this analysis as were patients with silicone implants at the PIP joints, those who had more than one surgically treated finger, and patients who declined the use of their data. Patients who had revision surgery during the 2 year study period were also excluded from the analysis of outcomes, but the reasons for revision were noted.

The data analysis was approved by the local ethics committee and conducted according to the RECORD (REporting of studies Conducted using Observational Routinely-collected health Data) statement (Benchimol et al., 2015).

# Intervention

The PIP arthroplasties were done by hand surgeons with varying levels of expertise ranging from non-specialists (level 1) to experts (level 5; 84% of the operations) as defined by Tang and Giddins (2016). The CapFlex-PIP prosthesis (KLS Martin, Tuttlingen, Germany) was implanted as described by Schindele et al. (2015) using anterior (Simmen, 1993), dorsal Chamay (1988) or tendon splitting approaches (Schindele et al., 2017; Swanson, 1973), based on the surgeons' discretion. In joints with an axis deviation over 15° and radial instability, we tend to tension the radial collateral ligament with a non-absorbable suture.

The postoperative standardized rehabilitation protocol involved immobilizing the PIP joint for 2 weeks in straight fingers and up to 4 weeks in fingers with severe axis deviation. Afterward, active mobilization started. Six weeks after operation and radiographic assessment, patients were allowed to fully integrate their hand into daily activities.

#### Outcome measures

Patients were assessed before surgery (baseline) and at the scheduled 2 year follow-up. At each time point, patients underwent a clinical assessment and completed a set of questionnaires.

The primary outcome was hand function measured with the brief MHQ. This tool shows good measurement properties for patients with various hand conditions (Knobloch et al., 2012; Waljee et al., 2011; Wehrli et al., 2016), and the final score ranges from 0 to 100, with higher scores indicating better hand function.

Patients rated their pain at rest and during activities on a numeric rating scale from 0 to 10, where 0 indicates no pain and 10 indicates maximum pain. Flexion and extension of the PIP joint were measured with a goniometer and the total range of motion was calculated. One measure of maximum grip strength was done in a standardized sitting position using a Jamar dynamometer (SAEHAN Corporation, Masan, South Korea).

Standard posteroanterior and lateral radiographs of the affected finger were taken and assessed for joint axis deviation. At follow-up, radiographs were also assessed for radiolucent lines around the implant.

Throughout the 2 year postoperative period, any complications were documented in REDCap by the surgeon and an independent researcher. Complications were defined as any untoward medical occurrence (International Organization for Standardization, 2020) related to the primary PIP surgery that required treatment. The outcomes in patients who were initially included in the registry but dropped out owing to revision surgery (i.e. subsequent surgery with implant modifications such as implant removal or exchange of one or more components) were not analysed, but the reasons for revisions were described and the revision rate was calculated.

# Statistical analysis

The sample size was determined based on all available patients with severe and no PIP joint axis deviation documented in the registry. Histograms and a quantile-quantile plot showed that the data were

Bandzaite et al. 951

normally distributed. For descriptive statistics, means and 95% confidence intervals were calculated. Withingroup changes of interval scaled data were analysed with a paired, two-tailed t-test and between-group differences with an unpaired, two-tailed t-test. Ordinal outcomes were compared using Fisher's exact test. Significance level was set at  $p \leq 0.05$ .

### Results

Between May 2010 and March 2022, 85 patients with a severe preoperative axis deviation and 56 patients without axis deviation underwent a PIP surface replacement arthroplasty (Figure 1). Up to 2 years after surgery, five patients with severe preoperative deviations (5.9%) underwent revision surgery because of stiffness, stiffness with rupture of the radial collateral ligament, late low-grade infection, suspected metal intolerance and recurrent, unstable axis deviation.

Two joints were revised to an arthrodesis, two received a silicone implant and in one the CapFlex-PIP implant was removed without further procedure. One patient without preoperative axis deviation (1.8%) required revision surgery with a component change because of implant luxation. The revision rates did not differ significantly between the groups (p = 0.402).

At 2 years, 68 (80%) patients with preoperative axis deviation and 50 (89%) patients without deviation were available for follow-up (Figure 1; Table 1). Patients in both groups had a mean preoperative brief MHQ score of 47 and similar 2 year scores of 72 (severe deviation) and 70 (no preoperative deviation) (Table 2). In addition, pain, range of motion and grip strength did not differ between the groups. All clinical and patient-reported outcomes improved significantly between baseline and 2 years after the surgery (Table 2). Radiolucent lines around the implant were seen in nine (13%) patients with

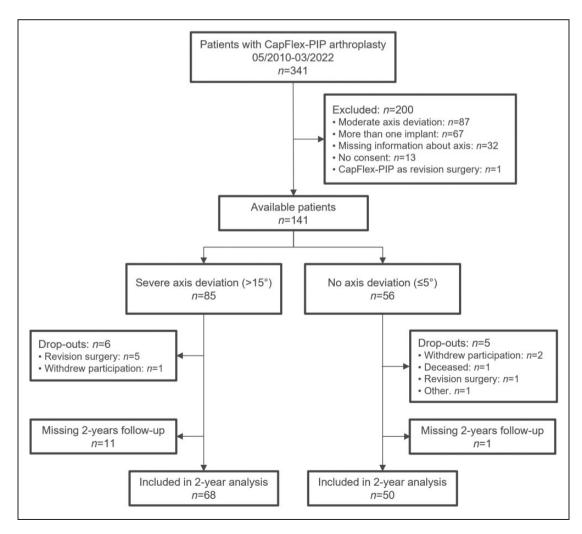



Figure 1. Patient selection diagram.

| Table 1. | Characteristics | of patients w | vith and | without | severe | preoperative | proximal | interphalan- |
|----------|-----------------|---------------|----------|---------|--------|--------------|----------|--------------|
| geal axi | s deviation.    |               |          |         |        |              |          |              |

|                          | Severe deviation $(>15^{\circ})$ $(n=68)$ | No deviation $(<5^\circ)$ $(n=50)$ | <i>p</i> -Value |
|--------------------------|-------------------------------------------|------------------------------------|-----------------|
| Age (years), mean (SD)   | 68 (12)                                   | 69 (12)                            | 0.93            |
| Female                   | 41 (60)                                   | 39 (78)                            | <b>≤0.05</b>    |
| Diagnosis*               |                                           |                                    | 0.483           |
| Primary osteoarthritis   | 54 (79)                                   | 44 (88)                            |                 |
| Secondary osteoarthritis | 9 (13)                                    | 4 (8)                              |                 |
| Inflammatory disease     | 5 (7)                                     | 2 (4)                              |                 |
| Affected finger          |                                           |                                    | < 0.001         |
| Index                    | 38 (56)                                   | 15 (30)                            | _               |
| Middle                   | 19 (28)                                   | 14 (28)                            |                 |
| Ring                     | 4 (6)                                     | 18 (36)                            |                 |
| Small                    | 7 (10)                                    | 3 (6)                              |                 |

Data are presented as n (%) unless otherwise stated. Bold values indicate significant differences.

**Table 2.** Patient-reported and clinical measures at baseline and 2 years for patients with and without severe preoperative proximal interphalangeal axis deviation.

|                               | Baseline      | 2 Years       | <i>p</i> -Value within-group |
|-------------------------------|---------------|---------------|------------------------------|
| Brief MHQ (0-100)             |               |               |                              |
| Severe deviation              | 47 (43–51)    | 72 (68–77)    | ≤0.001                       |
| No deviation                  | 47 (42–51)    | 70 (65–76)    | <b>≤0.001</b>                |
| p-Value between-group         | 0.877         | 0.546         |                              |
| Pain at rest (0-10)           |               |               |                              |
| Severe deviation              | 5.0 (4.3-5.7) | 1.1 (0.7–1.5) | <b>≤0.001</b>                |
| No deviation                  | 4.8 (3.8-5.8) | 1.6 (1.0-2.2) | ≤0.001                       |
| p-Value between-group         | 0.746         | 0.173         |                              |
| Pain during activities (0-10) |               |               |                              |
| Severe deviation              | 6.5 (5.9-7.0) | 1.9 (1.3–2.4) | ≤0.001                       |
| No deviation                  | 6.8 (6.1–7.5) | 2.4 (1.8–3.1) | ≤0.001                       |
| p-Value between-group         | 0.459         | 0.203         |                              |
| Range of motion (deg)         |               |               |                              |
| Severe deviation              | 41 (36–46)    | 57 (51–63)    | ≤0.001                       |
| No deviation                  | 45 (39–51)    | 58 (51–65)    | <b>≤0.05</b>                 |
| p-Value between-group         | 0.331         | 0.851         |                              |
| Grip strength (kg)            |               |               |                              |
| Severe deviation              | 21 (18–24)    | 26 (22–29)    | <b>≤0.001</b>                |
| No deviation                  | 18 (15–21)    | 22 (18–25)    | <b>≤0.001</b>                |
| p-Value between-group         | 0.118         | 0.100         |                              |

Data are presented as mean (95% CI). Bold values indicate statistically significant differences. MHQ, Michigan Hand Outcomes Questionnaire.

severe deviation and six (12%) patients without preoperative deviation (p=1.0). At the 2 year follow-up, only six patients still had a severe axis deviation and the majority of fingers could be corrected to a deviation of less than 15° (Table 3; Figure 2).

Complications occurred in five (7.4%) patients with severe deviation and three (6%) patients without preoperative deviation (p=1.0) (Table 4).

**Table 3.** Axis deviation at 2 years.

| Axis deviation at 2 years | Severe deviation at baseline | No deviation at baseline |  |
|---------------------------|------------------------------|--------------------------|--|
| <5°<br>5–15°<br>>15°      | 43 (73)<br>10 (17)<br>6 (10) | 37 (86)<br>6 (14)        |  |

Data are presented as n (%). Some 2 year data are missing.

SD, Standard deviation. \*Percentages may differ from 100 owing to rounding errors.

Bandzaite et al. 953

## **Discussion**

The comparison of patients with and without preoperative deviation of the longitudinal joint axis showed similar outcomes at 2 years after PIP joint surface replacement. Therefore, our hypothesis that both



**Figure 2.** Standard posteroanterior radiographs showing an example of severe longitudinal finger axis deviation at baseline (left) that could be corrected to a straight finger 2 years after proximal interphalangeal joint arthroplasty (right).

groups would have similar hand function, as measured by the brief MHQ, could be confirmed.

Joint axis could be corrected with a surface-replacing implant in most of our cases. In contrast, this outcome was unattainable with silicone arthroplasty; Takigawa et al. (2004) showed that most patients with preoperative moderate or severe axis deviation who underwent Swanson silicone PIP joint arthroplasty experienced recurrent ulnar or radial axis deviation. In such cases, the deviating forces often lead to implant fracture requiring a reoperation (Takigawa et al., 2004). Consequently, PIP joint fusion in the radial digits has remained the treatment of choice for decades and provides good pain relief, high patient satisfaction and successful fusion in 92–96% of cases (Millrose et al., 2022; Pellegrini and Burton, 1990).

Despite the good outcomes of joint fusion, there is a trend towards motion-preserving arthroplasty to improve the function over that achieved with fusion (Herren, 2017). Even in the index finger, surface-replacing arthroplasty produces good results that are comparable with those achieved for other fingers (Herren et al., 2022). Therefore, we prefer a motion-preserving treatment rather than joint fusion. However, the type of implant needs to be carefully considered. Cadaver and biomechanical studies have shown that the lateral stability of surface-replacing arthroplasty is superior to that of silicone implants (Hensler et al., 2020; Minamikawa et al., 1994).

A recent retrospective analysis including 61 patients described similar clinical results to our study in that the median baseline axial deviation of 11° could be significantly corrected to 2° at 3 years after surface-replacing PIP arthroplasty (Meuser et al., 2024). The authors also described tensioning the elongated radial collateral ligament after

**Table 4:** Eight patients with postoperative complications after proximal interphalangeal arthroplasty that required treatment before the 2 year follow-up.

| Preoperative axis deviation | Finger | Complication                   | Treatment                                                                  | Months until treatment |
|-----------------------------|--------|--------------------------------|----------------------------------------------------------------------------|------------------------|
| Severe deviation            | Middle | Boutonnière deformity          | Reoperation: arthro-/<br>tenolysis with reconstruction<br>extensor tendons | 7                      |
| Severe deviation            | Middle | Suture granuloma               | Reoperation: granuloma removal                                             | 23                     |
| Severe deviation            | Index  | Instability and axis deviation | Splint                                                                     | 1                      |
| Severe deviation            | Middle | Stiffness                      | Hand therapy                                                               | 1                      |
| Severe deviation            | Index  | Painful axis deviation         | Splint; hand therapy                                                       | 1                      |
| No deviation                | Ring   | Stiffness, swan neck deformity | Reoperation: arthro-/tenolysis                                             | 20                     |
| No deviation                | Index  | Painful osteophyte             | Reoperation: osteophyte removal                                            | 9                      |
| No deviation                | Middle | Trauma                         | Bandage; steroid infiltration                                              | 5                      |

prosthesis implantation in joints with deviations over 15° to avoid recurrent deviation while adhering to the standard rehabilitation protocol (Meuser et al., 2024). We also believe that tensioning the radial collateral ligament helps to recentre the joint. In this context, we also recommend longer postoperative immobilization than is used for stable joints, as well as controlled mobilization and the use of dynamic splints.

Although there was no statistically significant difference in revision rates between the groups in our cohort, the 5.9% revision rate for deviated joints is somewhat higher than the 1.8% for those joints without any deviation. This higher revision rate is still comparable with rates that have been published for silicone arthroplasties (3.3–11%) (Helder et al., 2021; Yamamoto et al., 2017). However, the revisions rate for deviated joints is slightly higher than for CapFlex-PIP implants in general (3–4.4%) (Helder et al., 2021; Meuser et al., 2024; Reischenböck et al., 2021. In cases of persisting complaints after PIP joint arthroplasty, joint fusion remains an option for revision, with satisfactory functional and subjective results (Jones et al., 2011).

The reasons for reoperation in our cohort cannot be directly related to preoperative axis deviation. However, the main reason for postoperative stiffness, which required either additional hand therapy or surgery, could be indirectly related to axis deviation, as these joints were immobilized longer after surgery than straight fingers.

This study is limited by the registry design: the sample size in both groups differed owing to the availability of patients and there were some missing data at follow-up. In particular, in the severe axis deviation group, 11 patients missed the 2 year follow-up. In these patients, the implant is still in situ and missing data occurred for reasons unrelated to the PIP surgery, such as poor general health. Inclusion of those patients would produce data that differed somewhat from the current set, yet it is unlikely that the paper's overall conclusions would be altered. The operations were done by 10 different surgeons and different surgical approaches were used. Assessments were also carried out by different surgeons. Therefore, variations in the surgical techniques or assessments could have potentially affected the outcomes. Another limitation is the short follow-up of 2 years, which precludes conclusions about implant survival and long-term follow-up. In the group with preoperative deviation, a higher proportion of patients had the index finger affected or inflammatory disease. As both may be risk factors for revision surgery, this may have contributed to the higher revision rate. The study may be at risk of type 2 error (failing to detect a real difference) because of the small sample size. However, as the confidence intervals overlap and the difference of two points in the brief MHQ score at 2 years is well below the reported minimal important change of 18 points in patients with PIP osteoarthritis (Marks et al., 2019), we consider the results to be robust.

Based on the results of this study, we recommend a surface replacing implant to correct severe preoperative axis deviations of the PIP joint, but the risk of revision surgery needs to be considered.

**Acknowledgements** The authors would like to thank Melissa Wilhelmi, PhD (Schulthess Klinik) for the copyediting of this manuscript, Tanja Pudic (Schulthess Klinik) for assistance in data collection and Kei Mathis (Schulthess Klinik) for data management.

**Conflict of interest statement** S. Schindele and D.B. Herren were involved in the development of the CapFlex-PIP prosthesis and receive royalties from KLS Martin Group, Tuttlingen, Germany. Miriam Marks has a consultancy agreement with KLS Martin Group, Tuttlingen, Germany.

**Funding statement** This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

**Ethical approval statement** Ethics approval for this study was obtained from the Cantonal Ethics Committee of Zurich, Switzerland (no. 2014-0546).

**Informed consent declaration** Written informed consent was obtained from all subjects before the study.

**ORCID iD** Daniel B Herren **(D** https://orcid.org/0000-0001-6585-2341

#### References

Bales JG, Wall LB, Stern PJ. Long-term results of Swanson silicone arthroplasty for proximal interphalangeal joint osteoarthritis. J Hand Surg Am. 2014, 39: 455–61.

Benchimol EI, Smeeth L, Guttmann A et al. The REporting of studies Conducted using Observational Routinely-collected health Data (RECORD) statement. PLoS Medicine. 2015, 12: e1001885.

Ceruso M, Pfanner S, Carulli C. Proximal interphalangeal (PIP) joint replacements with pyrolytic carbon implants in the hand. EFORT Open Rev. 2017, 2: 21–7.

Chamay A. A distally based dorsal and triangular tendinous flap for direct access to the proximal interphalangeal joint. Ann Chir Main. 1988, 7: 179–83.

El-Gohary TM, Abd Elkader SM, Al-Shenqiti AM, Ibrahim MI. Assessment of hand-grip and key-pinch strength at three arm positions among healthy college students: dominant versus non-dominant hand. J Taibah Univ Med Sci. 2019, 14: 566–71.

Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research Electronic Data Capture (REDCap) – A metadatadriven methodology and workflow process for providing Bandzaite et al. 955

translational research informatics support. J Biomed Inform. 2009, 42: 377-81.

- Helder O, Marks M, Schweizer A, Herren DB, Schindele S. Complications after surface replacing and silicone PIP arthroplasty: an analysis of 703 implants. Arch Orthop Trauma Surg. 2021, 141: 173–81.
- Hensler S, Behm P, Wehrli M et al. Lateral stability in healthy proximal interphalangeal joints versus surface replacement and silicone arthroplasty: results of a three-dimensional motion analysis study. Hand Surg Rehabil. 2020, 39: 296–301.
- Herren DB. Current European practice in the treatment of proximal interphalangeal joint arthritis. Hand Clin. 2017, 33: 489–500.
- Herren DB, Oyewale M, Marks M. Is it useful to replace the proximal interphalangeal joint at the index finger? Analysis of prospective 5-year outcomes. J Hand Surg Eur. 2022, 47: 1080-2.
- International Organization for Standardization. ISO 14155:2020. Clinical investigation of medical devices for human subjects—Good clinical practice. 2020. https://www.iso.org/standard/71690.html (accessed 11 Sep 2024).
- Jones DB, Jr, Ackerman DB, Sammer DM, Rizzo M. Arthrodesis as a salvage for failed proximal interphalangeal joint arthroplasty. J Hand Surg Am. 2011, 36: 259–64.
- Knobloch K, Kraemer R, Papst S, Sorg H, Vogt PM. German version of the brief Michigan Hand Outcomes Questionnaire: implications for early quality of life following collagenase injection in dupuytren contracture. Plast Reconstr Surg. 2012, 129: 886e–7e.
- Marks M, Hensler S, Wehrli M, Schindele S, Herren DB. Minimal important change and patient acceptable symptom state for patients after proximal interphalangeal joint arthroplasty. J Hand Surg Eur. 2019, 44: 175–80.
- Meuser S, Richter M, Kernich N. Prosthetic arthroplasty of the proximal interphalangeal joint using a surface replacing implant (CapFlex-PIP): 3-year outcomes. J Hand Surg Eur. 2024, 49: 477–82.
- Millrose M, Gesslein M, Ittermann T, Kim S, Vonderlind HC, Ruettermann M. Arthrodesis of the proximal interphalangeal joint of the finger a systematic review. EFORT Open Rev. 2022, 7: 49–58.
- Minamikawa Y, Imaeda T, Amadio PC, Linscheid RL, Cooney WP, An KN. Lateral stability of proximal interphalangeal joint replacement. J Hand Surg Am. 1994, 19: 1050-4.

- Pellegrini VD Jr., Burton RI. Osteoarthritis of the proximal interphalangeal joint of the hand: arthroplasty or fusion? J Hand Surg Am. 1990, 15: 194–209.
- Reischenböck V, Marks M, Herren DB, Schindele S. Surface replacing arthroplasty of the proximal interphalangeal joint using the CapFlex-PIP implant: a prospective study with 5-year outcomes. J Hand Surg Eur. 2021. 46: 496–503.
- Schindele SF, Altwegg A, Hensler S. [Surface replacement of proximal interphalangeal joints using CapFlex-PIP]. Oper Orthop Traumatol. 2017, 29: 86–96.
- Schindele SF, Hensler S, Audigé L, Marks M, Herren DB. A modular surface gliding implant (CapFlex-PIP) for proximal interphalangeal joint osteoarthritis: a prospective case series. J Hand Surg Am. 2015, 40: 334–40.
- Simmen BR. Der palmare Zugang zur Arthroplastik des proximalen Interphalangeal-Fingergelenkes. Operat Orthop Traumat. 1993, 5: 112–23.
- Swanson AB. Implant resection arthroplasty of the proximal interphalangeal joint. Orthop Clin North Am. 1973, 4: 1007–29.
- Takigawa S, Meletiou S, Sauerbier M, Cooney WP. Long-term assessment of Swanson implant arthroplasty in the proximal interphalangeal joint of the hand. J Hand Surg Am. 2004, 29: 785–95.
- Tang JB, Giddins G. Why and how to report surgeons' levels of expertise. J Hand Surg Eur. 2016, 41: 365-6.
- Vitale MA, Fruth KM, Rizzo M, Moran SL, Kakar S. Prosthetic arthroplasty versus arthrodesis for osteoarthritis and posttraumatic arthritis of the index finger proximal interphalangeal joint. J Hand Surg Am. 2015, 40: 1937–48.
- Waljee JF, Kim HM, Burns PB, Chung KC. Development of a brief, 12-item version of the Michigan Hand Questionnaire. Plast Reconstr Surg. 2011, 128: 208–20.
- Wehrli M, Hensler S, Schindele S, Herren DB, Marks M. Measurement properties of the Brief Michigan Hand Outcomes Questionnaire in patients with Dupuytren contracture. J Hand Surg Am. 2016, 41: 896–902.
- Yamamoto M, Malay S, Fujihara Y, Zhong L, Chung KC. A systematic review of different implants and approaches for proximal interphalangeal joint arthroplasty. Plast Reconstr Surg. 2017, 139: 1139e–51e.